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Today’s topics

1. Review
2. State machines



Figure 5.66.  A simple flip-flop circuit.

Assume:
tsu = 0.6 ns
th = 0.4 ns
0.8 ns <= tcQ <= 1.0 ns
tgate = 1.0 + 0.1k

where
k = number of inputs

Tmin = tcQmax +  tNOT + tsu

= 1.0 + 1.1 + 0.6 = 2.7 ns
Fmax = 1/2.7 ns = 370.37 MHz.



Figure 5.66.  A simple flip-flop circuit.

Checking hold time
Assume:

tsu = 0.6 ns
th = 0.4 ns
0.8 ns <= tcQ <= 1.0 ns
tgate = 1.0 + 0.1k

where
k = number of inputs

Shortest delay = tcQmin +  tNOT
= 0.8 + 1.1 = 1.9 ns

Since 1.9 ns > th = 0.4 ns,
no hold violation. 



Figure 5.67.   A 4-bit 
counter critical path.

Tmin = tcQmax +  3 tAND +  tXOR + tsu

= 1.0 +  3(1.2) + 1.2 + 0.6 = 6.4 ns
Fmax = 1/6.4 ns = 156.25 MHz.



module Dflipflop( input clock,

reset, D, output reg Q );

always @( posedge clock )

Q <= reset ? 0 : D;

endmodule

Code for a D flip-flop using a <= non-blocking assignment.



module Dflipflop( input clock,

reset, D, output reg Q );

always @( posedge clock )

Q <= reset ? 0 : D;

endmodule

Code for a D flip-flop using a <= non-blocking assignment.

The RHS of the <= 
operator is evaluated 
just before the clock 
edge and the 
assignment is made just 
after the clock edge.



module Dflipflop( input clock,

reset, D, output reg Q );

always @( posedge clock )

Q <= reset ? 0 : D;

endmodule



module JK( input clock, J, K, reset,
output reg Q );

always @( posedge reset,
posedge clock )

casex ( { reset, J, K } )
'b1xx: Q <= 0;
'b000: Q <= Q;
'b001: Q <= 0;
'b010: Q <= 1;
'b011: Q <= ~Q;

endcase

endmodule



module SynchReset( input clock, reset, D,
output Q );

// Synchronous reset (synchronized to the clock)
always @( posedge clock )

Q <= reset ? 0 : D;

endmodule

module AsyncReset( input clock, reset, D, output Q );

// Asynchronous reset (not synchronized to the clock)
always @( posedge reset, posedge clock )

Q <= reset ? 0 : D;

endmodule

D flip-flops with synchronous and asynchronous resets.



module CounterA(
input clock, reset,
input [ 31:0 ] resetValue,
output reg [ 31:0 ] count = 0 );

// Synchronous reset (synchronized to the clock)
always @( posedge clock )

count <= reset ? resetValue : count + 1;

endmodule

module CounterB(
input clock, reset,
input [ 31:0 ] resetValue,
output reg [ 31:0 ] count = 0 );

// Asynchronous reset (not synchronized to the clock)
always @( posedge reset, posedge clock )

count <= reset ? resetValue : count + 1;

endmodule



CounterA CounterB 
always @( posedge clock ) 
   count <= reset ? 
      resetValue : count + 1; 

always @( posedge reset, posedge clock ) 
   count <= reset ? 
      resetValue : count + 1; 

 

From simulation, reset in synchronous in CounterA, changing only with the clock,  
and asynchronous in CounterB.


		CounterA

		CounterB



		always @( posedge clock )

   count <= reset ?
      resetValue : count + 1;

		always @( posedge reset, posedge clock )

   count <= reset ?
      resetValue : count + 1;









module ShiftRegister #( parameter n = 4 )
( input clock, reset, D,
output reg [0 : n - 1] Q );

always @( posedge clock )
if ( reset )

Q <= 0;
else

begin
integer i;
for ( i = n - 1; i != 0; i = i - 1 )

Q[ i ] <= Q[ i – 1 ];
Q[ 0 ] <= D;
end

endmodule



module ShiftRegister2 #( parameter n = 4 )
( input clock, reset, D,
output reg [ 0 : n – 1 ] Q );

always @( posedge clock )
if ( reset )

Q <= 0;
else

Q <= { D, Q[ 0 : n – 2 ] };
endmodule



Finite state machines

Machines whose next state depends on 
the inputs and the previous state.
Called finite state machines because they 
have only a finite number of states.



In a combinational circuit, the values of the outputs 
are determined solely by the present values of its 
inputs.

In a sequential circuit, the values of the outputs 
depend on the past behavior of the circuit, as well as 
the present values of its inputs.

A sequential circuit has states, which in conjunction 
with the present values of inputs determine its 
behavior.



Sequential circuits can be:

• Synchronous – where flip-flops are used to 
implement the states, and a clock signal is used to          
control the operation

• Asynchronous – where no clock is used



Terminology

Sequential circuits:  Outputs depend on the past 
behavior as well as the present inputs.
Synchronous sequential:  Controlled  by a clock.
Asynchronous sequential:  No clock is used.

State:  The stored values of any flip-flops.
Active edge:  The edge of the clock that causes the 

outputs to change.
Finite state machine (FSM): Formal name for a 

sequential circuit.



Combinatorial
logic

State variables
(Flip-flops)

Combinatorial
logic

Inputs
Outputs

Clock

Generalized form of a sequential circuit

If the outputs depend on both the current state and the 
current inputs, it is called a  Mealy machine, named after 
George Mealy, who invented the concept in 1955.



Combinatorial
logic

State variables
(Flip-flops)

Combinatorial
logic

Inputs
Outputs

Clock

Moore machine

If the outputs depend only on the current state, it is called a  
Moore machine.  (“Moore is less.”) It’s named after Edward 
Moore, who invented the concept in 1956.



Mealy machines require fewer states but if the inputs change asynchronously, 
the outputs can change asynchronously as well.

Moore machines require more state variables and the outputs are delayed 
by one clock.  But all the outputs are guaranteed to be synchronous.



Asynchronous inputs and metastability

Two related problems.
1. Asynchronous inputs.  An input may change be 

between clocks.
2. Metastability.  The input might not actually be a 

1 or a 0.

If an input signal with one of these problems is a 
combinatorial factor in your output, your output 
will have the same problems.



Solution

We can condition the input somewhat with 
analog circuitry, e.g., Schmidt triggers.

The digital solution is that we can sample it with 
a clock and save the result in a flip-flop.

We expect that no matter what the input, the 
flip-flop will certainly settle to 1 or 0 and that’s 
usually true.



But note

Sampling doesn’t always work.
It’s possible for a flip-flop to get stuck in a 

metastable state because of a bad input, 
never settling into a 0 or 1.

If you add additional flip-flops to create a shift 
register, you can reduce the likelihood of 
having a metastable circuit but you cannot 
make it go away.



Combinatorial
logic

Flip-flops
Outputs

Clock

Simplest example:  A counter

Reset



A B

CD

State diagram for a 
counter with 4 states.

At each clock, it 
always moves to the 
next state.

The arrows between 
states are called 
edges or transitions.

Reset



We pick any state assignments 
we like, though some could be 
better than others.

State table
Present state Next state

A B
B C
C D
D A

A B

CD

Reset

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00



A B

CD

Reset

Y1 y1
0 1

y2 0 1 0
1 1 0

Y1 = y1'

Y2 y1
0 1

y2 0 0 1
1 1 0

Y2 = y1 ^ y2

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

Having picked the assignments, we 
can use Karnaugh maps to derive the 
equations for the next state variables.



Y1 y1
0 1

y2 0 1 0
1 1 0

Y1 = y1'

Y2 y1
0 1

y2 0 0 1
1 1 0

Y2 = y1 ^ y2

D Q

QD

Set

Rst
Clock

Reset*

y1

y2



Y1 y1
0 1

y2 0 1 0
1 1 0

Y1 = y1'

Y2 y1
0 1

y2 0 0 1
1 1 0

Y2 = y1 ^ y2

module Counter( input clock,
reset,
output reg y1, y2 );

always @( posedge reset,
posedge clock )

if ( reset )
begin
y1 <= 0;
y2 <= 0;
end

else
begin
y1 <= ~y1;
y2 <= y1 ^ y2;
end

endmodule

In Verilog, the <= “non-blocking” assignment 
means all the assignments happen 
synchronously at exit from the always block.



State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

In Verilog, we would probably skip 
the Karnaugh maps write the code 
directly from the state-assigned 
table. module Counter2( input clock,

reset,
output reg [ 1:0 ] y );

always @( posedge reset,
posedge clock )

y <= reset ? 0 : y + 1;

endmodule



State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

module Counter3( input clock,
reset,
output reg [ 1:0 ] y );

always @( posedge reset,
posedge clock )

if ( reset )
y <= 0;

else
case ( y )

0:  y <= 1;
1:  y <= 2;
2:  y <= 3;
3:  y <= 0;

endcase
endmodule

If the cases were more complex or 
not in order, we might write it like 
this with a case statement.



State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

Or we might parameterize the 
assignments.

module Counter4( input clock,
reset,
output reg [ 1:0 ] y );

parameter A = 0, B = 1,
C = 2, D = 3;

always @( posedge reset,
posedge clock )

if ( reset )
y <= 0;

else
case ( y )

A:  y <= B;
B:  y <= C;
C:  y <= D;
D:  y <= A;

endcase

endmodule



Verilog makes it really easy to pick any assignments 
you like and walk from one arbitrary state to 
another.

Example: Create a 3-bit counter in Verilog that 
cycles through this sequence:  4, 7, 0, 3, 2, 6, 1, 5. 



Example: Create a 3-bit counter in Verilog that 
cycles through this sequence:  4, 7, 0, 3, 2, 6, 1, 5. 

module PseudoRandom( input clock,
output reg [ 2:0 ] Q );

always @( posedge clock )
case ( Q )

4:  Q <= 7; 
7:  Q <= 0; 
0:  Q <= 3; 
3:  Q <= 2; 
2:  Q <= 6; 
6:  Q <= 1; 
1:  Q <= 5; 
5:  Q <= 4;

endcase

endmodule



A/0001 B/0010

C/0100D/1000

Reset

In the previous example, we 
didn’t specify the outputs, merely 
that it had to count.

But consider this state diagram, 
where the outputs have been 
specified.

The “/nnnn” part specifies the 
desired outputs at each state.

Since the outputs depend only on 
the state, this is a Moore 
machine.



A/0001 B/0010

C/0100D/1000

Reset

State table
Present state Next state Output

A B 0001
B C 0010
C D 0100
D A 1000

State-assigned table
Present state Next state Output

y2 y1 Y2 Y1 z4 z3 z2 z1
A 00 01 0001
B 01 10 0010
C 10 11 0100
D 11 00 1000

Suppose we use 
the previous state 
assignments.



D Q

QD

Set

Rst
Clock

Reset*

y1

y2

z1

z2

z3

z4

State-assigned table
Present state Next state Output

y2 y1 Y2 Y1 z4 z3 z2 z1
A 00 01 0001
B 01 10 0010
C 10 11 0100
D 11 00 1000

With these 
assignments, we 
need a decoder 
to produce the 
outputs.



D Q
Set

y1
QD

Rst

QD

Rst

QD

Rst

Clock
Reset*

y2 y3 y4

z1 z2 z3 z4

"One hot" state-assigned table
Present state Next state Output
y4 y3 y2 y1 Y4 Y3 Y2 Y1 z4 z3 z2 z1

A 0001 0010 0001
B 0010 0100 0010
C 0100 1000 0100
D 1000 0001 1000

Here is an alternate 
assignment as a 
“one-hot” ring 
counter.



D Q

QD

Set

Rst
Clock

Reset*

y1

y2

z1

z2

z3

z4

D Q
Set

y1
QD

Rst

QD

Rst

QD

Rst

Clock
Reset*

y2 y3 y4

z1 z2 z3 z4

So which is the better 
design?  Both are correct.

Picking a good set of state 
assignments usually 
involves consideration of 
both cost and elegance.



Example:  A simple speed control

Outputs 1 if a vehicle’s speed is excessive 
for 2 or more clocks.



Figure 6.2.   Sequences of input and output signals.

Clockcycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1 
z : 0 0 0 0 0 1 0 0 1 1 0 

Example:  A speed governor that limits a vehicle’s top speed.

Input:
w == 1  excessive speed
w == 0  speed acceptable

w == 1 for 2+ clocks  z == 1

Output:
z == 1  reduce speed
z == 0 maintain current speed



Figure 6.3.   State diagram for the speed control.

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = Input:
w == 1  excessive speed
w == 0  speed acceptable

Output:
z == 1  reduce speed
z == 0 maintain current speed

w == 1 for 2+ clocks  z == 1



Figure 6.4.  State table for the speed control.

Present Next state Output
state w = 0 w = 1 z 

A A B 0 
B A C 0 
C A C 1 

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 



Figure 6.5.   A generalized solution to the speed controller, 
with input w, output z, and two flip-flops for the three states.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2



The present state variables, y1 and y2, determine the 
present state of the circuit.
The next state variables, Y1 and Y2, determine the 
state into which the circuit will go after the next active 
edge of the clock signal.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2



State variable assignments

Each of the states in a state diagram or a 
state table must be represented by some 
unique combination of 1’s and 0’s.

We have to pick those assignments and 
some assignments are better than others.



Figure 6.6.   One possible state assignment for the speed controller.

Present 
Next state 

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1 
z 

A 00 00 01 0 

B 01 00 10 0 

C 10 00 10 1 

11 dd dd d 

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 



Figure 6.7.   Karnaugh maps for the next state 
variables in the speed controller.

Ignoring don't cares Using don't cares 

Y1 = w y1’ y2’

Y2 = w y1 y2’ +
w y1’ y2 

z = y1’ y2

Y1 = w y1’ y2’ 

Y2 = w y1 + w y2
= w ( y1 + y2 ) 

z = y2



Figure 6.8.   Final implementation of the speed 
controller using the don’t cares.

Present Next state 

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1 
z 

A 00 00 01 0 
B 01 00 10 0 
C 10 00 10 1 

11 dd dd d 

Y1 = w y1’ y2’ 

Y2 = w ( y1 + y2 )

z = y2 



Figure 6.9.   Timing diagram for the speed controller.

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1 
0 

1 

0 

1 

0 

1 

0 

Clock 

w 

y 1 

y 2 

1 

0 
z 



Design steps:

1. Obtain the specification of the desired circuit.
2. Derive a state diagram.
3. Derive the corresponding state table.
4. Reduce the number of states if possible.
5. Decide on the number of state variables.
6. Choose the type of flip-flops to be used.
7. Derive the logic expressions needed to implement the 

circuit.



Are all state assignments equivalent?

No, they are not.



Figure 6.16.   Improved state assignment for the speed controller.

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 

State C is 11 
instead of 10.



Figure 6.17.   Final circuit for the improved state 
assignment for the speed controller.



Original versus improved state 
assignment for the speed controller.

Present Next state 

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1 
z 

A 00 00 01 0 
B 01 00 10 0 
C 10 00 10 1 

11 dd dd d 



Figure 6.27.   Improved speed 
controller is still a Moore design.



module simple1 ( input clock,
reset, w, output z );

reg [ 2:1 ] y, Y;
parameter [ 2:1 ] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @( w, y )

case ( y )
A: if ( w ) Y = B;

else Y = A;
B: if ( w ) Y = C;

else Y = A;
C: if ( w ) Y = C;

else Y = A;
default: Y = 2'bxx;

endcase

// Define the sequential block
always @( posedge reset,

posedge clock)
if ( reset ) y <= A;
else y <= Y;

// Define output
assign z = y == C;

endmodule

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 

Figure 6.29.  Verilog code for the speed controller.



Figure 6.32.   Simulation results for the speed controller.

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 



module simple2 ( input clock,
reset, w, output reg z );

reg [ 2:1 ] y, Y;
parameter [ 2:1 ] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @( w, y )

begin
case ( y )

A: if ( w ) Y = B;
else Y = A;

B: if ( w ) Y = C;
else Y = A;

C: if ( w ) Y = C;
else Y = A;

default: Y = 2'bxx;
endcase
z = y == C; // Define output
end

// Define the sequential block
always @( posedge reset,

posedge clock)
if ( reset ) y <= A;
else y <= Y;

endmodule

Output assignment 
moved to the always 
block.

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 

Figure 6.33



module simple3 ( input clock,
reset, w, output z );

reg [ 2:1 ] y, Y;
parameter [ 2:1 ] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @( posedge reset,

posedge clock)
if ( reset )

y <= A;
else

case ( y )
A: if ( w ) y <= B;

else y <= A;
B: if ( w ) y <= C;

else y <= A;
C: if ( w ) y <= C;

else y <= A;
default: y <= 2'bxx;

endcase

// Define output
assign z = y == C;

endmodule

Next state and reset 
calculations moved into 
the always block.

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 

Figure 6.34



module simple4 ( input clock,
reset, w, output reg z );

reg [ 2:1 ] y, Y;
parameter [ 2:1 ] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @( posedge reset,

posedge clock)
casex ( { reset, w, y } )

3'b1xxx: y <= A;
3'b00xx: y <= A;
{ 2'b01, A }: y <= B;
{ 2'b01, B }: y <= C;
{ 2'b01, C }: y <= C;
default: y <= 2'bxx;

endcase

// Define output
assign z = y == C;

endmodule

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 



module simple5 ( input clock,
reset, w, output reg z );

reg [ 2:1 ] y, Y;
parameter [ 2:1 ] A = 2'b00,

B = 2'b01, C = 2'b10,
x = 2'bxx;

// Define the next state
always @( posedge reset,

posedge clock )
casex ( { reset, w, y } )

{ 2'b1x, x }:  y <= A;
{ 2'b00, x }:  y <= A;
{ 2'b01, A }:  y <= B;
{ 2'b01, B }:  y <= C;
{ 2'b01, C }:  y <= C;
default:       y <= x;

endcase

// Define output
assign z = y == C;

endmodule

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 



Figure 6.20.   Anther alternative:  A one-hot state 
assignment for the speed controller.

Present Nextstate 
state w = 0 w = 1 Output

y 3 y 2 y 1 Y 3 Y 2 Y 1 Y 3 Y 2 Y 1 
z 

A 001 001 010 0 
B 010 001 100 0 
C 100 001 100 1 

C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 
w 0 = w 1 = 



A Mealy alternative



Figure 6.22.   Sequence detector for an alternate speed 
controller.  This one recognizes  w = 1 on two cycles 
immediately.

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1 
z : 0 0 0 0 1 0 0 1 1 0 0 

Clockcycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1 
z : 0 0 0 0 0 1 0 0 1 1 0 

The alternative Mealy design

The original Moore design



Figure 6.23.   State diagram of the alternate 
speed controller.

A 

w 0 = z 0 = ⁄ 

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄ 

Reset 
w 1 = z 0 = ⁄ 

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1 
z : 0 0 0 0 1 0 0 1 1 0 0 



Figure 6.24.   State table for the alternate speed controller.

Present Next state Output z 

state w = 0 w = 1 w = 0 w = 1 

A A B 0 0 
B A B 0 1 

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1 
z : 0 0 0 0 1 0 0 1 1 0 0 

A 

w 0 = z 0 = ⁄ 

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄ 

Reset 
w 1 = z 0 = ⁄ 



Figure 6.25.   State-assigned table for an 
alternate Mealy speed controller.

Present Next state Output
state w = 0 w = 1 w = 0 w = 1 

y Y Y z z 

A 0 0 1 0 0 
B 1 0 1 0 1 

A 

w 0 = z 0 = ⁄ 

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄ 

Reset 
w 1 = z 0 = ⁄ 



Figure 6.26.   The alternate Mealy speed controller.

Clock 

Resetn

D Q 

Q 

w 

z 

(a) Circuit 

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1 
0 
1 
0 

1 
0 

1 
0 

Clock 

y 

w 

z 

y 

(b) Timing diagram



Figure 6.27.   The original Moore speed 
controller.
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Resetn

D Q 
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The alternative Mealy design
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The original Moore design



The alternative Mealy design

The original Moore design



module mealy1( input clock, reset, w,
output reg z );

reg y, Y;
parameter A = 0, B = 1;

// Define the next state and outputs
always @( * )

case ( y )
A: if ( w )

begin
z = 0;
Y = B;
end

else
begin
z = 0;
Y = A;
end

B: if ( w )
begin
z = 1;
Y = B;
end

else
begin
z = 0;
Y = A;
end

endcase

// Define the sequential block
always @( posedge reset,

posedge clock )
if ( reset )

y <= A;
else

y <= Y;

endmodule

Figure 6.36



module mealy2( input clock, reset, w,
output reg z );

reg y, Y;
parameter A = 0, B = 1;

// Define the next state and outputs
always @( * )

if ( ~w )
begin
z = 0;
Y = A;
end

else
case ( y )

A: begin
z = 0;
Y = B;
end

B: begin
z = 1;
Y = B;
end

endcase

// Define the sequential block
always @( posedge reset,

posedge clock )
if ( reset )

y <= A;
else

y <= Y;

endmodule



module mealy3( input clock, reset, w,
output z );

reg y, Y;
parameter A = 0, B = 1;

// Define the next state
always @( * )

if ( ~w )
Y = A;

else
case ( y )

A: Y = B;
B: Y = B;

endcase

assign z = y == B && w;

// Define the sequential block
always @( posedge reset,

posedge clock )
y <= reset ? A : Y;

endmodule



module mealy4( input clock, reset, w,
output z );

reg y;
parameter A = 0, B = 1;

always @( posedge reset,
posedge clock )

y <= ( reset | ~w ) ? A : B;

assign z = y == B && w;

endmodule



Figure 6.37.   Simulation results for the Mealy machine.



Figure 6.38.   Potential problem with asynchronous inputs to 
the Mealy speed controller.

The input, w, changes on the falling edge 
of the clock but the outputs change on the 
rising edge causing an incorrect output.
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