
BEE 271 Digital circuits and systems
Spring 2017

Lecture 12: State machines

Nicole Hamilton
https://faculty.washington.edu/kd1uj

https://faculty.washington.edu/kd1uj

Today’s topics

1. Review
2. State machines

Figure 5.66. A simple flip-flop circuit.

Assume:
tsu = 0.6 ns
th = 0.4 ns
0.8 ns <= tcQ <= 1.0 ns
tgate = 1.0 + 0.1k

where
k = number of inputs

Tmin = tcQmax + tNOT + tsu

= 1.0 + 1.1 + 0.6 = 2.7 ns
Fmax = 1/2.7 ns = 370.37 MHz.

Figure 5.66. A simple flip-flop circuit.

Checking hold time
Assume:

tsu = 0.6 ns
th = 0.4 ns
0.8 ns <= tcQ <= 1.0 ns
tgate = 1.0 + 0.1k

where
k = number of inputs

Shortest delay = tcQmin + tNOT
= 0.8 + 1.1 = 1.9 ns

Since 1.9 ns > th = 0.4 ns,
no hold violation.

Figure 5.67. A 4-bit
counter critical path.

Tmin = tcQmax + 3 tAND + tXOR + tsu

= 1.0 + 3(1.2) + 1.2 + 0.6 = 6.4 ns
Fmax = 1/6.4 ns = 156.25 MHz.

module Dflipflop(input clock,

reset, D, output reg Q);

always @(posedge clock)

Q <= reset ? 0 : D;

endmodule

Code for a D flip-flop using a <= non-blocking assignment.

module Dflipflop(input clock,

reset, D, output reg Q);

always @(posedge clock)

Q <= reset ? 0 : D;

endmodule

Code for a D flip-flop using a <= non-blocking assignment.

The RHS of the <=
operator is evaluated
just before the clock
edge and the
assignment is made just
after the clock edge.

module Dflipflop(input clock,

reset, D, output reg Q);

always @(posedge clock)

Q <= reset ? 0 : D;

endmodule

module JK(input clock, J, K, reset,
output reg Q);

always @(posedge reset,
posedge clock)

casex ({ reset, J, K })
'b1xx: Q <= 0;
'b000: Q <= Q;
'b001: Q <= 0;
'b010: Q <= 1;
'b011: Q <= ~Q;

endcase

endmodule

module SynchReset(input clock, reset, D,
output Q);

// Synchronous reset (synchronized to the clock)
always @(posedge clock)

Q <= reset ? 0 : D;

endmodule

module AsyncReset(input clock, reset, D, output Q);

// Asynchronous reset (not synchronized to the clock)
always @(posedge reset, posedge clock)

Q <= reset ? 0 : D;

endmodule

D flip-flops with synchronous and asynchronous resets.

module CounterA(
input clock, reset,
input [31:0] resetValue,
output reg [31:0] count = 0);

// Synchronous reset (synchronized to the clock)
always @(posedge clock)

count <= reset ? resetValue : count + 1;

endmodule

module CounterB(
input clock, reset,
input [31:0] resetValue,
output reg [31:0] count = 0);

// Asynchronous reset (not synchronized to the clock)
always @(posedge reset, posedge clock)

count <= reset ? resetValue : count + 1;

endmodule

CounterA CounterB
always @(posedge clock)
 count <= reset ?
 resetValue : count + 1;

always @(posedge reset, posedge clock)
 count <= reset ?
 resetValue : count + 1;

From simulation, reset in synchronous in CounterA, changing only with the clock,
and asynchronous in CounterB.

		CounterA

		CounterB

		always @(posedge clock)

 count <= reset ?
 resetValue : count + 1;

		always @(posedge reset, posedge clock)

 count <= reset ?
 resetValue : count + 1;

module ShiftRegister #(parameter n = 4)
(input clock, reset, D,
output reg [0 : n - 1] Q);

always @(posedge clock)
if (reset)

Q <= 0;
else

begin
integer i;
for (i = n - 1; i != 0; i = i - 1)

Q[i] <= Q[i – 1];
Q[0] <= D;
end

endmodule

module ShiftRegister2 #(parameter n = 4)
(input clock, reset, D,
output reg [0 : n – 1] Q);

always @(posedge clock)
if (reset)

Q <= 0;
else

Q <= { D, Q[0 : n – 2] };
endmodule

Finite state machines

Machines whose next state depends on
the inputs and the previous state.
Called finite state machines because they
have only a finite number of states.

In a combinational circuit, the values of the outputs
are determined solely by the present values of its
inputs.

In a sequential circuit, the values of the outputs
depend on the past behavior of the circuit, as well as
the present values of its inputs.

A sequential circuit has states, which in conjunction
with the present values of inputs determine its
behavior.

Sequential circuits can be:

• Synchronous – where flip-flops are used to
implement the states, and a clock signal is used to
control the operation

• Asynchronous – where no clock is used

Terminology

Sequential circuits: Outputs depend on the past
behavior as well as the present inputs.
Synchronous sequential: Controlled by a clock.
Asynchronous sequential: No clock is used.

State: The stored values of any flip-flops.
Active edge: The edge of the clock that causes the

outputs to change.
Finite state machine (FSM): Formal name for a

sequential circuit.

Combinatorial
logic

State variables
(Flip-flops)

Combinatorial
logic

Inputs
Outputs

Clock

Generalized form of a sequential circuit

If the outputs depend on both the current state and the
current inputs, it is called a Mealy machine, named after
George Mealy, who invented the concept in 1955.

Combinatorial
logic

State variables
(Flip-flops)

Combinatorial
logic

Inputs
Outputs

Clock

Moore machine

If the outputs depend only on the current state, it is called a
Moore machine. (“Moore is less.”) It’s named after Edward
Moore, who invented the concept in 1956.

Mealy machines require fewer states but if the inputs change asynchronously,
the outputs can change asynchronously as well.

Moore machines require more state variables and the outputs are delayed
by one clock. But all the outputs are guaranteed to be synchronous.

Asynchronous inputs and metastability

Two related problems.
1. Asynchronous inputs. An input may change be

between clocks.
2. Metastability. The input might not actually be a

1 or a 0.

If an input signal with one of these problems is a
combinatorial factor in your output, your output
will have the same problems.

Solution

We can condition the input somewhat with
analog circuitry, e.g., Schmidt triggers.

The digital solution is that we can sample it with
a clock and save the result in a flip-flop.

We expect that no matter what the input, the
flip-flop will certainly settle to 1 or 0 and that’s
usually true.

But note

Sampling doesn’t always work.
It’s possible for a flip-flop to get stuck in a

metastable state because of a bad input,
never settling into a 0 or 1.

If you add additional flip-flops to create a shift
register, you can reduce the likelihood of
having a metastable circuit but you cannot
make it go away.

Combinatorial
logic

Flip-flops
Outputs

Clock

Simplest example: A counter

Reset

A B

CD

State diagram for a
counter with 4 states.

At each clock, it
always moves to the
next state.

The arrows between
states are called
edges or transitions.

Reset

We pick any state assignments
we like, though some could be
better than others.

State table
Present state Next state

A B
B C
C D
D A

A B

CD

Reset

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

A B

CD

Reset

Y1 y1
0 1

y2 0 1 0
1 1 0

Y1 = y1'

Y2 y1
0 1

y2 0 0 1
1 1 0

Y2 = y1 ^ y2

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

Having picked the assignments, we
can use Karnaugh maps to derive the
equations for the next state variables.

Y1 y1
0 1

y2 0 1 0
1 1 0

Y1 = y1'

Y2 y1
0 1

y2 0 0 1
1 1 0

Y2 = y1 ^ y2

D Q

QD

Set

Rst
Clock

Reset*

y1

y2

Y1 y1
0 1

y2 0 1 0
1 1 0

Y1 = y1'

Y2 y1
0 1

y2 0 0 1
1 1 0

Y2 = y1 ^ y2

module Counter(input clock,
reset,
output reg y1, y2);

always @(posedge reset,
posedge clock)

if (reset)
begin
y1 <= 0;
y2 <= 0;
end

else
begin
y1 <= ~y1;
y2 <= y1 ^ y2;
end

endmodule

In Verilog, the <= “non-blocking” assignment
means all the assignments happen
synchronously at exit from the always block.

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

In Verilog, we would probably skip
the Karnaugh maps write the code
directly from the state-assigned
table. module Counter2(input clock,

reset,
output reg [1:0] y);

always @(posedge reset,
posedge clock)

y <= reset ? 0 : y + 1;

endmodule

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

module Counter3(input clock,
reset,
output reg [1:0] y);

always @(posedge reset,
posedge clock)

if (reset)
y <= 0;

else
case (y)

0: y <= 1;
1: y <= 2;
2: y <= 3;
3: y <= 0;

endcase
endmodule

If the cases were more complex or
not in order, we might write it like
this with a case statement.

State-assigned table
Present state Next state

y2 y1 Y2 Y1
A 00 01
B 01 10
C 10 11
D 11 00

Or we might parameterize the
assignments.

module Counter4(input clock,
reset,
output reg [1:0] y);

parameter A = 0, B = 1,
C = 2, D = 3;

always @(posedge reset,
posedge clock)

if (reset)
y <= 0;

else
case (y)

A: y <= B;
B: y <= C;
C: y <= D;
D: y <= A;

endcase

endmodule

Verilog makes it really easy to pick any assignments
you like and walk from one arbitrary state to
another.

Example: Create a 3-bit counter in Verilog that
cycles through this sequence: 4, 7, 0, 3, 2, 6, 1, 5.

Example: Create a 3-bit counter in Verilog that
cycles through this sequence: 4, 7, 0, 3, 2, 6, 1, 5.

module PseudoRandom(input clock,
output reg [2:0] Q);

always @(posedge clock)
case (Q)

4: Q <= 7;
7: Q <= 0;
0: Q <= 3;
3: Q <= 2;
2: Q <= 6;
6: Q <= 1;
1: Q <= 5;
5: Q <= 4;

endcase

endmodule

A/0001 B/0010

C/0100D/1000

Reset

In the previous example, we
didn’t specify the outputs, merely
that it had to count.

But consider this state diagram,
where the outputs have been
specified.

The “/nnnn” part specifies the
desired outputs at each state.

Since the outputs depend only on
the state, this is a Moore
machine.

A/0001 B/0010

C/0100D/1000

Reset

State table
Present state Next state Output

A B 0001
B C 0010
C D 0100
D A 1000

State-assigned table
Present state Next state Output

y2 y1 Y2 Y1 z4 z3 z2 z1
A 00 01 0001
B 01 10 0010
C 10 11 0100
D 11 00 1000

Suppose we use
the previous state
assignments.

D Q

QD

Set

Rst
Clock

Reset*

y1

y2

z1

z2

z3

z4

State-assigned table
Present state Next state Output

y2 y1 Y2 Y1 z4 z3 z2 z1
A 00 01 0001
B 01 10 0010
C 10 11 0100
D 11 00 1000

With these
assignments, we
need a decoder
to produce the
outputs.

D Q
Set

y1
QD

Rst

QD

Rst

QD

Rst

Clock
Reset*

y2 y3 y4

z1 z2 z3 z4

"One hot" state-assigned table
Present state Next state Output
y4 y3 y2 y1 Y4 Y3 Y2 Y1 z4 z3 z2 z1

A 0001 0010 0001
B 0010 0100 0010
C 0100 1000 0100
D 1000 0001 1000

Here is an alternate
assignment as a
“one-hot” ring
counter.

D Q

QD

Set

Rst
Clock

Reset*

y1

y2

z1

z2

z3

z4

D Q
Set

y1
QD

Rst

QD

Rst

QD

Rst

Clock
Reset*

y2 y3 y4

z1 z2 z3 z4

So which is the better
design? Both are correct.

Picking a good set of state
assignments usually
involves consideration of
both cost and elegance.

Example: A simple speed control

Outputs 1 if a vehicle’s speed is excessive
for 2 or more clocks.

Figure 6.2. Sequences of input and output signals.

Clockcycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1
z : 0 0 0 0 0 1 0 0 1 1 0

Example: A speed governor that limits a vehicle’s top speed.

Input:
w == 1  excessive speed
w == 0  speed acceptable

w == 1 for 2+ clocks  z == 1

Output:
z == 1  reduce speed
z == 0 maintain current speed

Figure 6.3. State diagram for the speed control.

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 = Input:
w == 1  excessive speed
w == 0  speed acceptable

Output:
z == 1  reduce speed
z == 0 maintain current speed

w == 1 for 2+ clocks  z == 1

Figure 6.4. State table for the speed control.

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

Figure 6.5. A generalized solution to the speed controller,
with input w, output z, and two flip-flops for the three states.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

The present state variables, y1 and y2, determine the
present state of the circuit.
The next state variables, Y1 and Y2, determine the
state into which the circuit will go after the next active
edge of the clock signal.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

State variable assignments

Each of the states in a state diagram or a
state table must be represented by some
unique combination of 1’s and 0’s.

We have to pick those assignments and
some assignments are better than others.

Figure 6.6. One possible state assignment for the speed controller.

Present
Next state

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1
z

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

Figure 6.7. Karnaugh maps for the next state
variables in the speed controller.

Ignoring don't cares Using don't cares

Y1 = w y1’ y2’

Y2 = w y1 y2’ +
w y1’ y2

z = y1’ y2

Y1 = w y1’ y2’

Y2 = w y1 + w y2
= w (y1 + y2)

z = y2

Figure 6.8. Final implementation of the speed
controller using the don’t cares.

Present Next state

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1
z

A 00 00 01 0
B 01 00 10 0
C 10 00 10 1

11 dd dd d

Y1 = w y1’ y2’

Y2 = w (y1 + y2)

z = y2

Figure 6.9. Timing diagram for the speed controller.

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0

1

0

1

0

1

0

Clock

w

y 1

y 2

1

0
z

Design steps:

1. Obtain the specification of the desired circuit.
2. Derive a state diagram.
3. Derive the corresponding state table.
4. Reduce the number of states if possible.
5. Decide on the number of state variables.
6. Choose the type of flip-flops to be used.
7. Derive the logic expressions needed to implement the

circuit.

Are all state assignments equivalent?

No, they are not.

Figure 6.16. Improved state assignment for the speed controller.

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

State C is 11
instead of 10.

Figure 6.17. Final circuit for the improved state
assignment for the speed controller.

Original versus improved state
assignment for the speed controller.

Present Next state

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1
z

A 00 00 01 0
B 01 00 10 0
C 10 00 10 1

11 dd dd d

Figure 6.27. Improved speed
controller is still a Moore design.

module simple1 (input clock,
reset, w, output z);

reg [2:1] y, Y;
parameter [2:1] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @(w, y)

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2'bxx;

endcase

// Define the sequential block
always @(posedge reset,

posedge clock)
if (reset) y <= A;
else y <= Y;

// Define output
assign z = y == C;

endmodule

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

Figure 6.29. Verilog code for the speed controller.

Figure 6.32. Simulation results for the speed controller.

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

module simple2 (input clock,
reset, w, output reg z);

reg [2:1] y, Y;
parameter [2:1] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @(w, y)

begin
case (y)

A: if (w) Y = B;
else Y = A;

B: if (w) Y = C;
else Y = A;

C: if (w) Y = C;
else Y = A;

default: Y = 2'bxx;
endcase
z = y == C; // Define output
end

// Define the sequential block
always @(posedge reset,

posedge clock)
if (reset) y <= A;
else y <= Y;

endmodule

Output assignment
moved to the always
block.

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

Figure 6.33

module simple3 (input clock,
reset, w, output z);

reg [2:1] y, Y;
parameter [2:1] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @(posedge reset,

posedge clock)
if (reset)

y <= A;
else

case (y)
A: if (w) y <= B;

else y <= A;
B: if (w) y <= C;

else y <= A;
C: if (w) y <= C;

else y <= A;
default: y <= 2'bxx;

endcase

// Define output
assign z = y == C;

endmodule

Next state and reset
calculations moved into
the always block.

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

Figure 6.34

module simple4 (input clock,
reset, w, output reg z);

reg [2:1] y, Y;
parameter [2:1] A = 2'b00,

B = 2'b01, C = 2'b10;

// Define the next state
always @(posedge reset,

posedge clock)
casex ({ reset, w, y })

3'b1xxx: y <= A;
3'b00xx: y <= A;
{ 2'b01, A }: y <= B;
{ 2'b01, B }: y <= C;
{ 2'b01, C }: y <= C;
default: y <= 2'bxx;

endcase

// Define output
assign z = y == C;

endmodule

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

module simple5 (input clock,
reset, w, output reg z);

reg [2:1] y, Y;
parameter [2:1] A = 2'b00,

B = 2'b01, C = 2'b10,
x = 2'bxx;

// Define the next state
always @(posedge reset,

posedge clock)
casex ({ reset, w, y })

{ 2'b1x, x }: y <= A;
{ 2'b00, x }: y <= A;
{ 2'b01, A }: y <= B;
{ 2'b01, B }: y <= C;
{ 2'b01, C }: y <= C;
default: y <= x;

endcase

// Define output
assign z = y == C;

endmodule

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

Figure 6.20. Anther alternative: A one-hot state
assignment for the speed controller.

Present Nextstate
state w = 0 w = 1 Output

y 3 y 2 y 1 Y 3 Y 2 Y 1 Y 3 Y 2 Y 1
z

A 001 001 010 0
B 010 001 100 0
C 100 001 100 1

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =
w 0 = w 1 =

A Mealy alternative

Figure 6.22. Sequence detector for an alternate speed
controller. This one recognizes w = 1 on two cycles
immediately.

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1
z : 0 0 0 0 1 0 0 1 1 0 0

Clockcycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1
z : 0 0 0 0 0 1 0 0 1 1 0

The alternative Mealy design

The original Moore design

Figure 6.23. State diagram of the alternate
speed controller.

A

w 0 = z 0 = ⁄

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄

Reset
w 1 = z 0 = ⁄

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1
z : 0 0 0 0 1 0 0 1 1 0 0

Figure 6.24. State table for the alternate speed controller.

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0
B A B 0 1

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
w : 0 1 0 1 1 0 1 1 1 0 1
z : 0 0 0 0 1 0 0 1 1 0 0

A

w 0 = z 0 = ⁄

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄

Reset
w 1 = z 0 = ⁄

Figure 6.25. State-assigned table for an
alternate Mealy speed controller.

Present Next state Output
state w = 0 w = 1 w = 0 w = 1

y Y Y z z

A 0 0 1 0 0
B 1 0 1 0 1

A

w 0 = z 0 = ⁄

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄

Reset
w 1 = z 0 = ⁄

Figure 6.26. The alternate Mealy speed controller.

Clock

Resetn

D Q

Q

w

z

(a) Circuit

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10
1
0
1
0

1
0

1
0

Clock

y

w

z

y

(b) Timing diagram

Figure 6.27. The original Moore speed
controller.

Clock

Resetn

D Q

Q

w

z

The alternative Mealy design

y

The original Moore design

The alternative Mealy design

The original Moore design

module mealy1(input clock, reset, w,
output reg z);

reg y, Y;
parameter A = 0, B = 1;

// Define the next state and outputs
always @(*)

case (y)
A: if (w)

begin
z = 0;
Y = B;
end

else
begin
z = 0;
Y = A;
end

B: if (w)
begin
z = 1;
Y = B;
end

else
begin
z = 0;
Y = A;
end

endcase

// Define the sequential block
always @(posedge reset,

posedge clock)
if (reset)

y <= A;
else

y <= Y;

endmodule

Figure 6.36

module mealy2(input clock, reset, w,
output reg z);

reg y, Y;
parameter A = 0, B = 1;

// Define the next state and outputs
always @(*)

if (~w)
begin
z = 0;
Y = A;
end

else
case (y)

A: begin
z = 0;
Y = B;
end

B: begin
z = 1;
Y = B;
end

endcase

// Define the sequential block
always @(posedge reset,

posedge clock)
if (reset)

y <= A;
else

y <= Y;

endmodule

module mealy3(input clock, reset, w,
output z);

reg y, Y;
parameter A = 0, B = 1;

// Define the next state
always @(*)

if (~w)
Y = A;

else
case (y)

A: Y = B;
B: Y = B;

endcase

assign z = y == B && w;

// Define the sequential block
always @(posedge reset,

posedge clock)
y <= reset ? A : Y;

endmodule

module mealy4(input clock, reset, w,
output z);

reg y;
parameter A = 0, B = 1;

always @(posedge reset,
posedge clock)

y <= (reset | ~w) ? A : B;

assign z = y == B && w;

endmodule

Figure 6.37. Simulation results for the Mealy machine.

Figure 6.38. Potential problem with asynchronous inputs to
the Mealy speed controller.

The input, w, changes on the falling edge
of the clock but the outputs change on the
rising edge causing an incorrect output.

	BEE 271 Digital circuits and systems�Spring 2017�Lecture 12: State machines
	Today’s topics
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Finite state machines
	Slide Number 16
	Slide Number 17
	Terminology
	Generalized form of a sequential circuit
	Moore machine
	Slide Number 21
	Asynchronous inputs and metastability
	Solution
	But note
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Example: A simple speed control
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	State variable assignments
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Are all state assignments equivalent?
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	A Mealy alternative
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79

